Fiber metal cutting machine WATTSAN 1530 TABLECHANGE CABIN
Unique selling proposition
-
Table change system
-
Protective cabin
-
Cypcut/Cyptube software
-
Framed structure
-
3 years warranty on the emitter
Brief of Metal laser cutting machine WATTSAN 1530 TABLECHANGE CABIN
Wattsan 1530 Tablechange Cabine laser machine — production speed and safety
The WATTSAN 1530 TABLECHANGE CABINE laser metal cutting machine is equipped with an automatic exchange table and a protective cabin for the operator, which creates a safe working environment with high working speed.
The machine is used for treatment of stainless and carbon steel, copper, aluminum, galvanized sheet and other metals. The machine is used in mechanical engineering, aerospace, advertising industry, in the production of lifts and locomotives, for the manufacture of electrical equipment and spare parts.
An exchange table makes the cutting process more efficient: while the workpiece is being cut, the operator manages to change the sheets on another table. This production setup allows you to avoid downtimes and uses time as efficiently as possible.
The Cypcut control system is responsible for the machine operation. Servomotors move the portal along the X, Y and Z axes. The machine is equipped with wear-resistant guides. The supply kit also includes an industrial chiller to ensure timely cooling of the mechanisms.
Adjust the cutting process for your production
CYPCUT software has simple user-oriented controls. The implemented functions greatly simplify and optimize the cutting process.
Metal cutters from Wattsan — forget about repairs and downtime
-
Protective cabin
The module with a cabin is designed to protect against reflected radiation and sparks during cutting. The cabin can be installed on any Wattsan metal cutter. And according to safety regulations, the cabin should be installed on machines with an emitter power of 2000 watts or more.
-
Table exchange
Table exchange ensures continuous operation of the machine without wasting time for loading and unloading products. While a metal sheet is being cut on one table, the operator collects the finished products on the second table and prepares the next sheet. Thus, the exchange table allows you to speed up the production process by 1,5 times.
-
Precise design
In the process of designing the machine, various tests of static and dynamic loads were carried out to identify the maximum permissible deformations of the table and the bed in order to preserve the correct geometry of the structure. Due to the selected configuration, the maximum load on the table is increased by 800 kg of distributed weight. This allows processing materials up to 15 mm thick, with a 24/7 cutting accuracy of +-0.01 mm ,and ensures the durability of the bed up to 10 years.
-
Frame type for your tasks
Thanks to the aluminum portal and the design precisely calculated by our engineers, the machine is completely insured against deformations and breakdowns. Depending on your tasks, Wattsan machines use portals of three types: 3rd generation aluminum portal, lightweight aluminum portal of ZL101A and GB/T17 standard, and aluminum portal with titanium for operation at speeds over 120 m/min.
-
Rigidity and stability
The S series machines have a full metal sheet welded bed with a cross section of 9-12 mm, which allows cutting metal up to 10 mm thick. Wattsan frames have state-of-the-art design with the main task to avoid vibration when working at design speeds and accelerations. The frame can be installed on vibration mounts or anchored to a 50 cm thick concrete cushion.
-
Double protection of the guides
Wattsan machines are equipped with a special metal protection of the machine corrugated surface to further maintain the cleanliness of the sliding guides, saving time and money for replacing the dust cover.
-
Loading rollers
Several ball bearings on the working table make it easier the sheet loading onto the table. The rollers can be mounted on the front, back or side of the machine as desired. The roller is lifted above the cutting table in such a way as to ensure optimal feeding. One of the most important advantages of this feeding system is the prevention of scratches on the material.
Firm frame structure of Wattsan machines
During the machine operation inertia of gentry motion is transferred to the frame which is subjected to significant loads. Therefore material and structure of the machine play a significant role in securing the machine against deformation and breakage.
The machine frame is the base
Comparison table
Carbon steel (Oxygen)
|
||||
Source power | 1000 W | 1500 W | 3000 W | 6000 W |
---|---|---|---|---|
Thickness, mm | Speed (m/min) | |||
1 | 10 | 22 | 34 | 42 |
2 | 6,2 | 6,8 | 7,5 | 8,2 |
3 | 3 | 3,6 | 4,4 | 5,5 |
4 | 2,2 | 2,8 | 3,8 | 5 |
5 | 1,8 | 2,4 | 3,2 | 3,6 |
6 | 1,6 | 2 | 2,6 | 3,4 |
8 | 1,2 | 1,4 | 2,2 | 3 |
10 | 0,8 | 1 | 1,6 | 2,4 |
12 | 0,8 | 1,4 | 2 | |
14 | 0,6 | 1 | 1,3 | |
16 | 0,8 | 1,1 | ||
18 | 0,7 | 1 | ||
20 | 0,6 | 0,9 | ||
22 | 0,5 | 0,8 | ||
24 | 0,6 | |||
24 | 0,4 | |||
Stainless steel (Nitrogen)
|
||||
Source power | 1000 W | 1500 W | 3000 W | 6000 W |
Thickness, mm | Speed (m/min) | |||
1 | 23,8 | 26,4 | 34 | 41,4 |
2 | 10,8 | 11,9 | 15,4 | 28,6 |
3 | 2,3 | 4,1 | 8,6 | 15,8 |
4 | 1,3 | 2,2 | 5,5 | 9,4 |
5 | 0,7 | 1,2 | 4,3 | 6 |
6 | 1 | 3,1 | 4,7 | |
8 | 2 | 3,3 | ||
10 | 0,8 | 1,3 | ||
12 | 0,5 | 1,3 | ||
14 | 0,8 | |||
16 | 0,6 | |||
Aluminum (Nitrogen)
|
||||
Source power | 1000 W | 1500 W | 3000 W | 6000 W |
Thickness, mm | Speed (m/min) | |||
1 | 8,4 | 16 | 34 | 42 |
2 | 3,4 | 6,6 | 15 | 25,5 |
3 | 1,4 | 3,8 | 7,6 | 14,6 |
4 | 1,4 | 4 | 5,8 | |
5 | 3,3 | 4,9 | ||
6 | 2,1 | 4,1 | ||
8 | 0,9 | 2 | ||
10 | 0,6 | 1,7 | ||
12 | 0,8 | |||
14 | 0,6 | |||
16 | 0,5 | |||
Copper (Nitrogen)
|
||||
Source power | 1000 W | 1500 W | 3000 W | 6000 W |
Thickness, mm | Speed (m/min) | |||
1 | 8 | 12 | 22 | 32 |
2 | 3,2 | 4 | 8 | 12 |
3 | 1 | 2,2 | 5,2 | 6,4 |
4 | 1,4 | 4 | 5,4 | |
5 | 1,8 | 3,2 | ||
6 | 1,4 | 2,2 | ||
8 | 0,6 | 1,2 | ||
10 | 0,6 | |||
12 | 0,4 | |||
Brass (Nitgoren)
|
||||
Source power | 1000 W | 1500 W | 3000 W | 6000 W |
Thickness, mm | Speed (m/min) | |||
1 | 7 | 10 | 22 | 35 |
2 | 2 | 4 | 12 | 20 |
3 | 0,5 | 1,8 | 5 | 12 |
4 | 1 | 3 | 9 | |
5 | 2 | 6,5 | ||
6 | 1,3 | 3,8 | ||
8 | 0,6 | 1,8 | ||
10 | 1 | |||
12 | 0,7 |
High-tech equipment and verified accuracy are guaranteed
Purchase procedure
-
Equipment selection
We assist you in making your choice of a machine matching your needs
-
Sending invoice
We agree on the complete set of the machine and sending the invoice with the final cost of the equipment.
-
Payment
In full if the machine is in stock. 50% in advance 50% at the delivery if the machine is not in stock.
-
We check the machine
The 3 step quality control: at the Wattsan factory, at our warehouse in the Netherlands, before the delivery.
-
Delivery or pick-up
Either a transport company or you pick up the machine from our warehouse.
-
Launching equipment
We are here to assist you whenever you need support.
Laser head for your tasks
Wattsan metal cutters are equipped with laser heads from popular manufacturers such as Raytools, BOCI and Precitec.
Experiences from enthusiastic bloggers
Technical characteristics
Ask questions
-
A fiber-optic laser is best suited for cutting metal, but a specially equipped CO2 laser with a high-power laser tube may also be suitable for this purpose. However, it should be borne in mind that the thickness of the metal for cutting with a CO2 laser is limited to 1.5 mm, while a fiber-optic laser is capable of cutting up to 25 mm.
-
The cost of an hour of laser cutting depends not only on the power of the laser machine and the speed of its operation, but also on a number of other factors, such as: the professional skills of the machine operator, the cost of renting a production room, the cost and consumption of electricity, the cost of the material itself, the amount of scrap and downtime of the machine, and much more. In order to unambiguously answer the question about the cost of an hour of laser cutting, it is necessary to take into account all these parameters.
-
A focused laser beam is applied to the metal surface, as a result of which it melts, the molten material is blown out of the cutting zone with the help of an auxiliary gas.
-
The power of the laser emitter depends on the thickness of the material being processed and the desired processing speed. For example, a 1 kW emitter will cut 1 mm thick stainless steel at a speed of 13 m/min, and a 3 kW emitter will cut the same material at a speed of about 35 m/min. Here everything depends on the budget and the expediency of using the maximum possible capacity. Although it can be said that in today's competitive realities it does not make sense to buy a laser machine with a power of less than 1 kW.